Lee Duna@lemmy.nz to Technology@lemmy.worldEnglish · 1 year agoBusiness owner 'hires' ChatGPT for customer service, then fires the humansnationalpost.comexternal-linkmessage-square105fedilinkarrow-up1352arrow-down113
arrow-up1339arrow-down1external-linkBusiness owner 'hires' ChatGPT for customer service, then fires the humansnationalpost.comLee Duna@lemmy.nz to Technology@lemmy.worldEnglish · 1 year agomessage-square105fedilink
minus-squareAdalast@lemmy.worldlinkfedilinkEnglisharrow-up1·1 year agoYour points on MV are not unfounded, but they are also extremely homeocentric. All of your examples rely on the visible light spectrum as well as standard “vision” as we know it. Realistically any sensor can be used to generate an image if you know what you are doing with it. Radio telescopes are a great example of this. There is also a lot of research going on in giving AI’s MV senses access to other sections of the EM spectrum ( https://www.edge-ai-vision.com/2017/10/beyond-visible-light-applications-in-computer-vision/ and https://www.technologyreview.com/2019/10/09/132696/machine-vision-has-learned-to-use-radio-waves-to-see-through-walls-and-in-darkness/ ) as well as echolocation ( https://www.imveurope.com/news/echolocation-neural-net-gives-phones-3d-vision-sound ). There are many other types of “vision” that can be used that can definitely distinguish a popcan.
Your points on MV are not unfounded, but they are also extremely homeocentric. All of your examples rely on the visible light spectrum as well as standard “vision” as we know it. Realistically any sensor can be used to generate an image if you know what you are doing with it. Radio telescopes are a great example of this. There is also a lot of research going on in giving AI’s MV senses access to other sections of the EM spectrum ( https://www.edge-ai-vision.com/2017/10/beyond-visible-light-applications-in-computer-vision/ and https://www.technologyreview.com/2019/10/09/132696/machine-vision-has-learned-to-use-radio-waves-to-see-through-walls-and-in-darkness/ ) as well as echolocation ( https://www.imveurope.com/news/echolocation-neural-net-gives-phones-3d-vision-sound ). There are many other types of “vision” that can be used that can definitely distinguish a popcan.