Have you performed simple arithmetic operations like 0.1 + 0.2? You might have gotten something strange: 0.1 + 0.2 = 0.30000000000000004.

  • luciole (he/him)@beehaw.org
    link
    fedilink
    arrow-up
    21
    ·
    1 month ago

    Floating-point arithmetic is important to understand at least vaguely since it’s a pretty leaky abstraction. Fortunately, we don’t need a “✨Member-only story” on Medium to get acquainted with the underlying concepts.

  • karlhungus@lemmy.ca
    link
    fedilink
    arrow-up
    14
    arrow-down
    1
    ·
    1 month ago

    Ugh, i thought this was a question, not a link. So i spent time googling for a good tutorial on floats (because I didn’t click the link)…

    Now i hate myself, and this post.

  • RagingHungryPanda@lemm.ee
    link
    fedilink
    arrow-up
    9
    arrow-down
    1
    ·
    1 month ago

    It’s how CPUs do floating point calculations. It’s not just javascript. Long story short, a float is stored in the format of one bit for the +/-, some bits for a base value (mantissa), and some bits for the exponent. As a result, some numbers aren’t quite representable exactly.

  • Zagorath@aussie.zone
    link
    fedilink
    arrow-up
    7
    arrow-down
    1
    ·
    1 month ago

    A good way to think of it is to compare something similar in decimal. .1 and .2 are precise values in decimal, but can’t be represented as perfectly in binary. 1/3 might be a pretty good similar-enough example. With a lack of precision, that might become 0.33333333, which when added in the expression 1/3 + 1/3 + 1/3 will give you 0.99999999, instead of the correct answer of 1.

    • toasteecup@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      8
      ·
      1 month ago

      Python has no issues representing

      1/3 + 1/3 + 1/3

      as 1. I just opened a python interpreter, imported absolutely no libraries and typed

      1/3 + 1/3 + 1/3 enter and got 1 as the result. Seems like if python could do that, JavaScript should be able to as well.

        • toasteecup@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          arrow-down
          1
          ·
          1 month ago

          I’ll pass on the js interpreter. I don’t feel like learning the arcane runes.

          To your point, Python handles those by giving you 0.300000004 might have missed a zero but valid point nonetheless

      • Zagorath@aussie.zone
        link
        fedilink
        arrow-up
        5
        arrow-down
        1
        ·
        1 month ago

        I thought it was a rather simple analogue, but I guess it was too complicated for some?

        I said nothing about JavaScript or Python or any other language with my 1/3 example. I wasn’t even talking about binary. It was an example of something that might be problematic if you added numbers in an imprecise way in decimal, the same way binary floating point fails to accurately represent 1/10 + 1/5 from the OP.

        • ericjmorey@programming.dev
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          1 month ago

          Perhaps the following rewording of your last sentence would be easier for readers to follow along:

          With a lack of precision, 1/3 might become 0.33333333. When evaluating the expression 1/3 + 1/3 + 1/3, using 0.33333333 as an approximate representation of 1/3 will return a result of 0.99999999, instead of the correct answer of 1.

      • aubeynarf@lemmynsfw.com
        link
        fedilink
        arrow-up
        3
        arrow-down
        1
        ·
        edit-2
        1 month ago

        That’s because the nearest representable float to 0.99999999999999 is 1.0 - not because Python is handling rationals correctly.

        This is a float imprecision issue that just happens to work out in this case.

        It’s worth wondering why, if Python is OK with “/“ producing a result of a different type than its arguments, don’t they implement a ratio type. e.g. https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node18.html#SECTION00612000000000000000

  • aubeynarf@lemmynsfw.com
    link
    fedilink
    arrow-up
    4
    arrow-down
    2
    ·
    edit-2
    1 month ago

    JavaScript is truly a bizarre language - we don’t need to go as far as arbitrary-precision decimal, it does not even feature integers.

    I have to wonder why it ever makes the cut as a backend language.

    • luciole (he/him)@beehaw.org
      link
      fedilink
      arrow-up
      1
      ·
      1 month ago

      The JavaScript Number type is implemented as an IEEE 754 double and as such any integer between -253 and 253 are represented without loss of precision. I can’t say I’ve ever missed explicitly declaring a value as an integer in JS. It’s dynamically typed anyways. There’s the languages people complain about and the ones nobody uses.

      • aubeynarf@lemmynsfw.com
        link
        fedilink
        arrow-up
        2
        ·
        1 month ago

        And then JSON doesn’t restrict numbers to any range or precision; and at least when I deal with JSON values, I feel the need to represent them as a BigDecimal or similar arbitrary precision type to ensure I am not losing information.

        • luciole (he/him)@beehaw.org
          link
          fedilink
          arrow-up
          3
          ·
          edit-2
          1 month ago

          I hope you work in a field where worrying about your integers hitting larger values than 9 quadrillion is justified.

          • aubeynarf@lemmynsfw.com
            link
            fedilink
            arrow-up
            4
            ·
            edit-2
            1 month ago

            Could be a crypto key, or a randomly distributed 64-bit database row ID, or a memory offset in a stack dump of a 64 bit program

  • thingsiplay@beehaw.org
    link
    fedilink
    arrow-up
    1
    ·
    1 month ago

    If you are adding 0.1 + 0.2, then it means you can cut off anything after the first digit (after the dot off course). Because the rest of the 0.1 is only 0 and the rest of 0.2 is 0. That can help with rounding errors on floating point calculations. I don’t program JavaScript, so no idea what the best way to go about it would be.

      • thingsiplay@beehaw.org
        link
        fedilink
        arrow-up
        2
        arrow-down
        1
        ·
        1 month ago

        I don’t have much JavaScript experience, but maybe .toFixed() will help here. Playground (copy the below code to the playground to test): https://playcode.io/javascript

        const number = 0.1 + 0.2
        const fixed = number.toFixed(3)
        
        // Update header text
        document.querySelector('#header').innerHTML = message
        
        // Log to console
        console.log(number)
        console.log(fixed)
        

        outputs:

        0.30000000000000004
        0.300